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1. Introduction

The simultaneous acquisition of Computed Tomography (CT) and Positron Emission To-
mography (PET) can enhance localization of malignant tumor across the whole body, re-
sulting in early diagnosis and better disease management(Kurli et al., 2005; Froelich and
Salavati, 2020). Of particular relevance is the availability of reliable lesion segmentations,
which enables better tumor characterization. On the other hand, manual lesion delineation
in whole body scans can be extremely costly in terms of expert time, and is not a realis-
tic solution. In this context, machine learning has emerged as an ideal tool to speed up
PET/CT scan processing and produce accurate lesion segmentations. However, this is not
a straightforward problem, as lesions share hyper-intense appearance with healthy tissue
on PET scans, potentially leading to the generation of False Positives that may render a
computational system for this task useless.

The AutoPET competition was held in 2022 to deal with this challenging problem1, with
the second edition running in 2023 with an expanded dataset2. This document describes our
approach to solve the AutoPET-II challenge, going over the main aspects of our proposed
solution for robust PET/CT lesion segmentation. Accompanying code has been published
3; both artifacts (code and report) might be better read in conjunction. It is important
to stress that, for the sake of completeness, we report below all aspects of our solution.
However, in our opinion, the most critical components in making our system work were
5) a careful data splitting and performance metric choice, which enabled meaningful both
meaningful model ensembling and appropriate thresholding levels, and 8) a False Positive
removal sub-model that has the potential for improving performance. In addition, it speeds
up the prediction phase, as it can be useful for avoiding the costly segmentation of images
that contain no lesion.

The remaining of this report is distributed as follows:

• Section 2, Pre-processing and Data Augmentation: where we describe the exact
manner in which both CT and PET scans are prepared before being supplied to the
segmentation model for learning.

• Section 3, Architecture and Pre-Training: where we detail the neural network archi-
tecture used in this work, and the starting weights from which learning is initialized.

• Section 4, Loss Function, Model Output and Optimization: where we motivate
the choice of loss function, what is the structure of the output of our network, and how
we optimize its parameters.

1. https://autopet.grand-challenge.org/
2. https://autopet-ii.grand-challenge.org/
3. https://github.com/agaldran/autopet2
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• Section 5, From Probabilities to Predictions: where we discuss the binarization
mechanism necessary to turn voxel-wise probabilities into categorical segmentations.

• Section 6, Data Splitting and Ensembling: where we analyze the often understated
importance of a correct data split and how should multi-fold ensembling be handled in
the particular scenario of binary lesion segmentation.

• Section 7, False Positive Removal: where we describe the use of a secondary system,
complementing the segmentation model, that may be beneficial for both reducing false
positives and also accelerating inference times.

• Section 8, Performance metrics for model selection: where we study what is the
appropriate metric to evaluate intermediate model results, which determines important
aspects of the training like, e.g., early-stopping, and propose a (to the best of our knowl-
edge) new performance metric for the evaluation of voxel-wise probabilities in binary
segmentation problems.

2. Pre-Processing and Data Augmentation

The data loading and augmentation step in our approach is quite straightforward. We use
built-in data loading functionality from the Monai library (Cardoso and et al., 2022): we
first crop the PET and CT scans to their foreground (based on the CT scan, discarding
voxels with an intensity below the 5% percentile of values found in the training set). Then
we adjust volume spacing to a target value close to the median spacing on the training set
(2× 2× 3), and clamp intensity values to be between the 5% and 95% percentile of training
values. Next, we normalize intensities to 0 mean and unit standard deviation, and for each
scan we sample 12 volumetric patches of size 96×96×96, with a 2/3 probability of sampling
with a lesion voxel as center. Finally, we apply some random data augmentation operations
on those patches, namely random scaling, zooming, and flipping to alter geometry, and
random intensity scaling and shifting. More details can be found in our code repository4.

3. Architecture and Pre-training

In many medical image analysis competitions the default approach is to opt for the nnU-
net (Isensee et al., 2021), a segmentation framework that automatically adjusts its behavior
depending on dataset characteristics. Despite its excellent default design choice decisions,
we decided to start with another architecture, namely we selected the sliding-window trans-
former Swin-UNETR architecture (Hatamizadeh et al., 2022). Our choice was motivated by
the facts that a) Swin-UNETR holds the state-of-the-art in the popular Medical Decathlon
contest, and it is therefore a well-tested solution for volumetric image segmentation. and b)
pretrained weights, optimized on a CT segmentation task, are publicly available for several
instantiations of this architecture5. Specifically, three size variants exist: tiny, small, and
base. We did not notice significant performance improvements when using larger variants,
so we sticked to the tiny configuration, as shown in Fig. 1.

4. https://github.com/agaldran/autopet2/utils/data_load.py
5. See https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV
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Figure 1: Swin-UNETR model architecture, reproduced from the official repository.

4. Loss Function, Model Output, and Optimization

4.1. Loss Function, or the unreasonable robustness of Cross-Entropy

It is known that the Dice loss, despite being useful for maximizing segmentation and ground-
truth overlap, tends to prefer more “binary” solutions, i.e. it results in overconfident
segmentations (Mehrtash and et al., 2020). More recently, we benchmarked the Dice loss
against the Cross-Entropy loss for a 2-D binary lesion segmentation task in which we trained
models on images that always contained lesions, but then tested them on images that might
not show one (Galdran et al., 2023). In that work, we showed that the Dice loss would result
in catastrophic over-segmentations and false positives when no lesion was to be segmented,
and lead to drastic under-performance. On the other hand, the Cross-Entropy loss would
achieve slightly less Dice score on the part of the test set that contained lesions, but would
generate much less false positives.

In this competition, we quickly noticed that the same phenomenon took place. Early in
our model development we realized that training with Dice loss or variants of it (Dice+CE
- default of the nnU-net framework (Isensee et al., 2021), Dice+Focal, etc.) had the effect
of creating large volumes of false positives, even if we may sometimes achieve higher dice
scores. In contrast, Cross-Entropy minimization led to slightly less overlap, but much
better robustness. This is due to the increasing penalty that Cross-Entropy places on voxels
that are wrongly predicted with high confidence, a situation that the Dice loss completely
disregards. Since challenge metrics take into account the amount of false positives present
in submitted solutions, we discarded the Dice loss, even if we could sometimes achieve less
overlap on correctly segmented lesions.

4.2. Model Output

As a minor but relevant technical detail, when one trains a binary segmentation model, there
is the option of having the network return two values per voxel, which are passed through
a softmax layer to produce a “probability distribution” for belonging to the background
and to a lesion respectively. This is the most common implementation choice because it
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is immediate to reuse it for multi-class problem, without any substantial modification. On
the other hand, we can also have the network produce a single number, which is passed
through a sigmoid operation, and returns the “probability” of belonging to a lesion. Even
if performance differences will be small, this decision results in slightly different training
dynamics. More importantly, it allows the user to run ROC analysis and select a binary
threshold that may be optimal for the dataset at hand, instead of relying directly in the
implicit t = 0.5 threshold provided by an arg-max operation. We provide further discussion
on this aspect of our solution in Section 5.

4.3. Optimization

Non-standard choices in our approach, worth mentioning, are described next. Further
details are left to be checked in our code repository.

• In order to find more generalizable optima, we used a Cyclical Learning Rate schedule
(Smith, 2017) for training. We have typically found in our experience that this schedule
benefits not only convergence but also tends to find more generalizable solutions. We
trained our segmentation models during 50 cycles of 5 epochs each, and for classification
we trained for 5 cycles of 3 epochs each.

• Nesterov-Adam (Dozat, 2016), a small modification of the Adam optimizer that adds
momentum to it. At the start of the project, we found slightly better convergence when
using N-Adam instead of conventional Adam, so all our models were trained with it.

5. From Probabilities to Predictions

When training binary segmentation models with a single output in practice, there is no
reason why a model that perfectly sorts samples in the test set (AUC=1) needs to attain
full accuracy or Dice Score (DSC) when thresholding its probabilities using t = 0.5. Even
if the model is calibrated, so that its probabilities reflect real accuracy, an interesting
theoretical fact is that for a particular scan with a DSC of F , then its optimal threshold is
F/2 (Lipton et al., 2014). This points towards the need of selecting a meaningful threshold
value to map our probabilistic predictions (a real value in the unit interval for each voxel)
into categorical predictions (a binary {0,1} value per-voxel), i.e. final segmentations.

The standard approach in well-engineered machine learning is to use a validation set to
decide which threshold to apply, and there is little reason not to re-use the same validation
set we use during training. However, there is no clear answer regarding how to select a
single threshold for an ensemble of several models, as discussed in the next section.

6. Data Splitting and Ensembling

A common technique in many machine learning competitions is to train K-Fold ensembles
of models, in which we divide training data into K subsets, and then use K-1 for training
a model, the other for validation (e.g. early stopping), and then rotate the validation set
until we eventually train K models. This is the default strategy in the popular nnU-Net
framework, with K=5, and we also use here 5-fold cross-validation and ensembling.
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Table 1: Optimal thresholding/performance for each model on its validation set. Given this,
How should we select an optimal thresholding value for their ensemble?

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Opt. Thres./DSC 0.48/67.90 0.40/71.75 0.40/66.11 0.48/71.20 0.43/71.15

However, one needs to be careful when coupling this with a binary classification or seg-
mentation model for which we wish to tune the thresholding hyper-parameter, as described
in Section 5. In this case, we must ask ourselves: does each individual model require a
different threshold to maximize DSC on their own validation sets? and if the answer is yes,
how should we select an optimal thresholding strategy for the ensemble of all those models?
Should we take the average threshold? The minimum over all individual thresholds?

Table 1 shows the threshold that maximized validation DSC for each model in our 5-
fold training scheme. We can see that there is no clear way of choosing a single value for
ensembling their ensemble. What is more important to notice is that, if we have spent all
our training data on training the 5 models, there is no validation data left to run another
threshold selection analysis for the ensemble! For this reason, we decided to first separate
a common test set, that we would then use to find that value.

In addition, it should be noted that the challenge data contained just over a thousand
volumes, of which roughly half contained cancerous lesions, and the other half were control
cases. Since our model is already seeing negative examples each time we sample a volumetric
patch from a non-lesion area, we decided to train our 5-fold segmentation model on the
“positive” part of the dataset, which also allowed us to speed up training. With all this,
our data split for segmentation is illustrated in Fig. 2. The reason for having a test set of
negative examples will be made clear in next section.

Figure 2: Data Splits of the available training data. Roughly half of the data is positive
(contains lesions), and the other half is negative. Our segmentation model is
trained on positive data only, and the False Positive Removal model (Section 7)
is trained on positives and negatives. A test set is first separated so that we
can fix a suitable thresholding value for the ensembles, and later merged into
the training data for retraining. A 5-fold cross-validation ensembling strategy is
implemented.
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A last detail that is worth stressing is that, in order to avoid discarding valuable an-
notated positive data, once we have trained our 5-fold models and found a meaningful
thresholding value for their ensembling on the test set (t=0.375), we merge the test set
with the training data, and re-run the 5-fold training, this time without test set. The
resulting five models are the core of our submitted solution.

7. False Positive Removal

The AutoPET v2 competition allowed for two submissions on the hidden test set. This
set contains both positive and negative scans, and the submitted model is expected to
segment nothing on lesion-free samples. As such, the first of our submissions was a 5-fold
segmentation model processing every scan in the test set, and hoping that the selected
threshold is enough to segment all lesions while avoiding false positives on control scans.

Our second submission is similar in the segmentation branch, but it adds a classification
model that processes the scan first. This model attempts to find if the scan corresponds to
a healthy individual, and if this is the case, the scan is never submitted for segmentation.
Instead, an empty segmentation is returned by the system. This allows us to save on
inference time (as the segmentation step is quite heavier than the classification one), and
has the potential to improve our final performance.

Our segmentation model is trained to segment volumetric 96× 96× 96 patches from a
whole-body scan. At inference time, a sliding window approach is taken, but the model
only know what a lesion “looks like” locally. In contrast, a classification model (cancer
presence vs absence) needs to have the entire body view in order to make a decision,
but fitting such a large volume of data into a GPU would be extremely computationally
demanding. For this reason, inspired by (Heiliger et al., 2022), we train our classifier on two-
dimensional images extracted from PET data, by means of in-plane projection operators.
Specifically, we train a Swin transformer for classification (Liu et al., 2021), and use the
Maximum Intensity Projection over the X and Y directions. We discard the Z direction
due to worse classification performance, and keep the in-plane projections (see Table 2 for
average validation performances of each projection). It is reasonable to expect less accuracy
on Z, since the amount of slices we are adding up there is considerably larger (“head to
feet”, as opposed to “horizontal” body slices). Another interesting aspect of this approach
is that we perform data augmentation on the 3D volume before applying the projection,
including small three-dimensional rotations and other geometric operations that are richer
in this space than after projecting.

Table 2: Performance of 2D classifiers trained on MIP trained on X, Y, Z projections

Projection X Projection Y Projection Z

Area Under the ROC Curve 92.86 ±1.84 93.01±1.83 83.82±1.89

The training procedure for this classifier are otherwise similar to the segmentation train-
ing process, with a five-fold cross validation ensemble trained on negative vs positive data,
as illustrated on Fig. 2. The rest of the details can be checked out in our code repository.
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It is important to stress that, just as in the segmentation mode, we again need to use an
independent test set to find an optimal threshold for classifying a volume into the positive or
negative class, but this time we do not seek to maximize F1, or accuracy. Instead we select
the highest threshold on the test set6 that attains maximum sensitivity, i.e. that picks
up all positive samples without creating any False Negative. This is so because at inference
time we prefer to avoid declaring a sample as cancer-free when it is not, and would rather
send a scan without lesion into the segmentation leg of the system, which can still manage
to output an empty segmentation. Restricting ourselves to such a conservative approach (a
threshold of t=0.05 is used) results in producing approximately 1 False Positives for each
scan that we identity as True Negative and refuse to segment. Due to lack of time, we do
not have data on how many of those False Positives actually end up with an empty solution
after going through the segmentation model.

8. Performance Metric for Model Selection

During neural network training, it is customary to track model performance in order to
decide on hyper-parameters and carry out model selection. Usually we would be interested in
monitoring metrics that are correlated to our final use case. In the case of this competition,
that would be maximizing the Dice Score while reducing false positives. However, model
predictions are not categorical but probabilistic, and attempting to track these metrics
would require us so define a threshold during training, which we are unable to do in an
optimal manner as discussed above.

We propose to track instead the Area Under the ROC curve (AUROC) for assessing
if probabilistic predictions are discriminative enough, no matter of the scale in which they
move, since we will be defining our threshold later in the post-processing stage. On the other
hand, the AUROC could be easily overwhelmed by the extreme class imbalance typical of
volumetric lesion segmentation. Inspired by the Top-K loss function definition (Ma et al.,
2021), which mines hardest samples (“most misclassified”, or lowest loss value) in order to
derive a loss value, we apply a similar principle to performance measurement.

Consider a scan with a total amount of lesion voxels of n. We form an evaluation
set S with all these n voxels, and also with the n background voxels that receive a worst
prediction, i.e. that are closer to be considered as lesion by the model, discarding all the
remaining background voxels. We then compute the AUROC restricted to S, and utilize
this metric to perform model selection. A model with a perfect AUROC on S has a perfect
AUROC on the entire volume by definition, and we are able to bypass the class imbalance
problem this way.

9. Conclusions

Taking part in the AutoPET v2 challenge was an interesting learning experience. It was
one of my first attempts to learn the MONAI library: with all its ups and downs, it is
a great tool to have under ones’ belt. I would like to thank the organizers for keeping
communication channels open and active, for providing a starting baseline solution, and a
working docker container that could be submitted to GC out-of-the-box.

6. hence the need mentioned above for a test set of negative samples also
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