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Abstract. Fluorodeoxyglucose (FDG) in positron emission tomogra-
phy (PET) is crucial for tumor detection due to its ability to reflect
glucose consumption, especially in tumors like lung cancer, lymphoma,
and melanoma. PET combined with computed tomography (CT) is vi-
tal for diagnosing various solid tumors. Accurate segmentation of tu-
mor lesions is essential for precise analysis, but manual segmentation
is time-consuming. Automating this process is necessary for widespread
clinical use. Recent medical imaging advances highlight the widespread
adoption of highly accurate deep learning. However, segmenting tumor
lesions in whole-body PET/CT remains challenging due to FDG uptake
in healthy organs, causing mis-segmentation. Additionally, the scarcity
of meaningful whole-body PET/CT datasets and domain shifts affect
model generalization. Addressing these challenges, we propose a robust
PET/CT model training approach adaptable to domain shifts, integrat-
ing domain-specific knowledge and investigating efficient multimodal fu-
sion methods. The models derived from this approach achieve a 72.43%
dice score in validation. Our code is available at https://translate.

google.com/details?hl=ko&sl=en&tl=ko&op=translate
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1 Introduction

Fluorodeoxyglucose (FDG) is a widely utilized positron emission tomography
(PET) tracer in oncology due to its ability to reflect glucose consumption in
tissues, particularly increased glucose consumption observed in tumor lesions.
PET combined with computed tomography (CT) has become a standard diag-
nostic tool for a variety of malignant solid tumor types including lung cancer,
lymphoma, and melanoma [5]. An essential initial stage in quantitative PET/CT
analysis involves segmenting tumor lesions accurately, which facilitates precise
feature extraction, tumor characterization, oncological staging, and evaluation
of therapy response using image data. However, like a prevailing issue in most
medical imaging, manual lesion segmentation demands significant time and re-
sources, making it unfeasible for routine clinical application. Hence, automating
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Fig. 1. A figure caption is always placed below the illustration. Please note that short
captions are centered, while long ones are justified by the macro package automatically.

this process is vital to enable the extensive integration of comprehensive PET
image analysis in clinical settings. On the other hand, recent advancements in
medical imaging research have demonstrated the widespread adoption of deep
learning, exhibiting high levels of accuracy and performance to the extent of
establishing it as a standard [7, 12, 15]. These recent advancements in auto-
mated lesion segmentation using deep learning methods have demonstrated the
fundamental feasibility of PET/CT tasks. However, despite these strides, tumor
lesion detection and segmentation in whole-body PET/CT remains a relatively
challenging task. The specific challenge in lesion segmentation in FDG-PET
lies in the fact that in addition to tumor lesions, healthy organs (e.g., brain,
bladder, heart) can exhibit considerable FDG uptake. Therefore, avoiding mis-
segmentation or false positives can be challenging, and in reality, compared to
other challenge datasets, relatively lower performance of deep learning models
has been observed. Another aspect that adds to the difficulty of this task is
the scarcity of publicly available whole-body PET/CT data. While there is a
wealth of publicly available datasets for CT images, allowing for utilization in
self-supervised learning [15, 12], the situation is quite the opposite for PET im-
ages. There is a scarcity of meaningful volumes with significant spatial size in
the available datasets for training deep learning models in the context of PET
images. Additionally, in medical image analysis, there exists a challenge where,
despite the same modality, the model’s generalization performance significantly
worsens depending on the data acquisition protocol or site. Efforts have been on-
going to address this issue [2, 14]. With the scarcity of publicly available datasets
and the necessity for reliable analysis models, modeling considering domain gen-
eralization has emerged as a new requirement in this domain.
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Fig. 2. Overview of the three fusion strategies. Early fusion concatenates the CT and
PET volumes in a single input. Middle fusion combines the latent representations from
different encoders. Late fusion integrates the outputs of each independent network.

To address these challenges, we formulate and explore a robust PET/CT
model training approach that is adaptable to domain shifts. We apply domain
knowledge specific to PET to the augmentation methods and adopt training
approaches that have proven to be effective for domain generalization based on
prior research. Additionally, we investigate effective fusion methods for PET/CT
multimodality. The models obtained based on the proposed approach achieve a
72.43% dice score, an average of 8.6254 false positive volumes, and an average
of 11.5744 false negative volumes in the validation dataset.

2 Methods

2.1 Network Architectures

The network architecture we adopted for performing whole-body PET/CT seg-
mentation is a modification of the basic UNet structure [7], incorporating middle
fusion. Figure 1 provides a summary of the segmentation network 1. The net-
work is designed to have separate encoders for each modality (CT/PET). The
encoder for each modality extracts features specific to that modality. The out-
puts obtained from each encoder are then fed into the middle fusion manner
(refer Figure 2), where a channel-wise concatenation is performed, and the com-
bined output is passed to a single decoder. This middle fusion approach enhances
the segmentation performance by effectively integrating information from both
modalities. The encoder and decoder networks are structured into a total of 5
stages. Each stage consists of 2 convolutional blocks. A single convolution oper-
ation is followed by an Instance Normalization layer and SELU activation. The
encoder and decoder networks are structured into a total of 5 stages, with each
stage comprising 2 convolution blocks. Each block consists of a convolution op-
eration followed by an Instance Normalization layer and SELU activation. In the
encoder, downsampling is achieved using a max-pooling layer with a kernel size
of 2 and a stride of 2. Conversely, in the decoder, upsampling is performed using
transpose convolution layers with the same size and stride. The decoder output
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passes through to a convolution with a kernel size of 1, followed by a Softmax
layer, resulting in dense predictions.

2.2 Data Pre-processing

The AutoPET training dataset comprises 1,014 PET/CT scans obtained from
900 patients at the University Hospital Tübingen, Germany. Out of these, 513
scans exhibit no lesions (i.e. there is no foreground mask) [3]. Additionally, there
are 188 scans confirmed to have malignant melanoma, 168 with lung cancer,
and 145 with lymphoma through histological analysis. We employed a stratified
split based on these four patient case categories to construct the training and
in-validation sets from the provided 1,014 data samples. This approach aims to
achieve an effective dataset composition, not only for segmentation but also to
reduce False Negatives and False Positives in negative cases. The ratio between
the dataset and validation set is 80:20.

We normalized whole-body PET volumes with dimensions of 400x400 to stan-
dardized uptake values (SUV) after normalization. The CT scans obtained from
PET/CT scans of the same patients were processed to have the same spatial res-
olution as the transformed SUV volume. The CT images were normalized to have
values within the range of [0, 1] through min-max normalization, starting from
the original Hounsfield units range of [-1000, 1000]. For the SUV images, we nor-
malized them to one of two value ranges, [0, 20] or [0, 40], probabilistically. The
normalization was performed within the consistent range of [0, 1] using min-max
normalization without clipping. We adopted this approach for the following rea-
sons: 1) Even with the same acquisition protocol for PET imaging, there can be
variations in the acquired image values among individual patients. For instance,
despite using the same SUV acquisition method, there can be a significant differ-
ence in the composition of image values between two SUV images. 2) AutoPET’s
final test set was obtained from a total of 200 images, with only 25% acquired
from the same domain as the training data. The remaining 75% were obtained
from a different domain, which could lead to changes in data distribution due
to variations in acquisition protocol and site. To obtain a model that is agnostic
to such distribution changes, we used two different normalization ranges for the
SUV data in the training dataset. The ranges for SUV normalization values were
determined experimentally.

2.3 Augmentation Methods

To train the model, we utilized input volumes of size 160×160×160. From the
whole-body PET/CT scans, we employed two probabilistic methods for crop-
ping: The first method involves cropping to include a positive mask (i.e., tumor
lesions) when the input volume’s mask contains the foreground. The second
method is a completely spatially random crop. In the first strategy, when the
mask contains only the background, it behaves similarly to the second method.
This approach was chosen because tumor lesions in the dataset constitute a
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Table 1. Detailed Configurations of the data augmentations

Augmentation probability parameters

Random flip 0.5 spatial axis=[0,1,2]

Random Rotate 0.2 range = (-15, +15)

Elastic deformation 0.2 α = (100, 400), σ = (5, 13)

Gamma Transform 0.3 γ = (0.7, 1.5)

Intensity Shift 0.2 offsets = (-0.1, 0.1)

Intensity Scale 0.2 scaling factor=0.25

Gaussian Smooth 0.2 σ = (0.25, 1.1)

Low Resolution 0.3 randomly determined

Gaussian Noise 0.2 randomly determined

very small proportion of the entire volume and are not densely located around
a specific organ.

Table 1 depicts the augmentation methods and their configurations utilized
during model training. Some of the augmentations were adopted by referring to
the nnUNet training strategy [7]. Part of the test set data is acquired through
different acquisition protocols and sites compared to the training dataset. This
difference can lead to variations in spatial resolution and noise levels of the ac-
quired images. To achieve the generalizability of the model, including these vari-
ations, we incorporated Gaussian noise and low-resolution simulation into the
augmentation methods. The Gaussian noise augmentation was implemented by
stochastically generating multiple pairs of mean and standard deviation. During
augmentation, one pair is selected, and noise is added accordingly. To prevent
excessive mean shifts on the data normalized to the [0,1] scale, the mean param-
eter passed to the Gaussian noise was constructed through random sampling
between 0 and a value between 0 and 0.1.

The low-resolution simulation augmentation was also designed to operate
probabilistically. We performed this by increasing the spatial resolution size and
then reverting it back to the original size. For this approach, we randomly se-
lected a value between 0 and a specified offset as the maximum size for the in-
crease in resolution. By employing these two methods, we aimed to facilitate the
training of a model with excellent generalization performance even on PET/CT
images from different domains.

2.4 Loss function

The AutoPET challenge evaluation metrics consider not only a high dice score
for segmentation results but also low false positives and false negatives. This
notes that simply inducing over-segmentation to boost the dice score is not
a viable approach for training the model. The evaluation criteria emphasize
achieving a balance between segmentation accuracy and minimizing false posi-
tives/negatives. Furthermore, in the case of the AutoPET challenge, it has been
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Fig. 3. The learning rate values per iteration for training with Weight Averaging (WA).

proven by last year’s participants that obtaining a high dice score was very chal-
lenging. Hence, for training the model, we adopted the focal loss [9] along with
the dice loss as the loss function. The formula for the loss function is as follows:

L = 1− 1

2

∑N
i 2yiŷi + ϵ∑N

i yi +
∑N

i ŷi + ϵ
− 1

2

N∑
i

(1− p̂i)γ log p̂i (1)

where ϵ is a very small constant used to prevent division errors. y represents
the ground truth, and ŷ represents the model’s prediction. p̂ denotes voxel-wise
class probability.

2.5 Weight Averaging for Domain Generalization

The AutoPET dataset is composed of both the same domain as the training
dataset and different domains [3]. Therefore, to achieve good performance, the
model needs to perform well not only on the training dataset’s domain but also
on various other domains. To address domain generalization, we adopted the
Weight Averaging (WA) technique [8]. WA is a method that aims to obtain a
model robust to domain shifts in data acquired from different domains, from the
perspective of domain generalization. It resolves this by flattening the minima
of the trained model.

θ̂t =

{
θt, if t ≤ t0
t−t0

t−t0+1 · θ̂t−1 +
1

t−t0+1 · θt, otherwise
(2)

where θt denotes the model’s parameters at iteration t. By periodically updat-
ing and averaging the model’s parameters during training, the moving average
approach helps stabilize the model, making it more robust and enhancing gen-
eralization performance across different domains [8]. Specifically, when training
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the model, after t iterations, we began weight averaging and utilized annealing to
increase the learning rate and then decrease it to a constant learning rate. Figure
3 illustrates the learning rate at the initial state of performing weight averaging.
The yellow segment represents the interval during which training is conducted
without using weight averaging. On the other hand, the green segment represents
the learning rate during the periods when weight averaging is applied. Through
annealing, during the initial t0 iterations, we facilitate substantial movement of
the model, which might be oscillating near a specific minima. This prevents the
model from getting trapped in a particular minima. Following this, weight av-
eraging (WA) is employed to obtain broader (flatter) minima, contributing to a
more stable and generalized model.

Algorithm 1 Ensemble of Averages

1: Require:
2: θ0 pre-trained models;
3: {hm}Hm=1 hyperparameter config.
4: Training :
5: ∀m = 1 to H;
6: θm = FineTune(Θ0, hm)
7: Weight selection :
8: Rank{θm}Hm=1 by ValDice(θm)
9: M← ∅
10: θm = FineTune(Θ0, hm)
11: for m = 1 to H do
12: Dicea = ValDice(M ∪m)
13: Diceb = ValDice(M)
14: if Dicea ≥ Diceb then
15: M← M ∪ {m}
16: end if
17: end for

Algorithm 2 DiWA (Greedy)

1: Require:
2: θ0 pre-trained models;
3: {hm}Hm=1 hyperparameter config.
4: Training :
5: ∀m = 1 to H;
6: θm = FineTune(Θ0, hm)
7: Weight selection :
8: Rank{θm}Hm=1 by ValDice(θm)
9: M← ∅
10: θm = FineTune(Θ0, hm)
11: for m = 1 to H do
12: if Val(θM∪m) ≥ Val(θM) then
13: M← M ∪ {m}
14: end if
15: end for

Multi-runs of Weight Averaging. From the perspective of domain general-
ization, it has been demonstrated that the WA strategy is effective. However,
recent studies suggest that instead of using a single run with one set of hyper-
parameters, it can be more effective to obtain models using WA across various
hyperparameter settings [13, 11, 1]. This involves acquiring a diverse set of mod-
els, enabling access to broader flat optima, and potentially achieving higher
performance. In this paper, we adopted the methods of Ensemble of Averages
(EoA) [1] and Diverse Weight Averaging (DiWA) [11], and the algorithm used
is outlined in Algorithm 1 and 2. Both the EoA and DiWA methods utilized
a greedy approach and were applied to the Final Test. EoA involves ensemble
predictions from each prediction obtained through WA from different runs. On
the other hand, DiWA involves performing WA once again on models obtained
from WA across different runs.
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3 Results

3.1 Implementation Details

In the training step, we maintained the voxel spacing of the original data. An
effective batch size of 8 was used, and each model was trained for 1000 epochs.
To obtain the pre-trained model θt, we used the AdamP [6] optimizer with beta
values of (0.9, 0.999) and a weight decay of 0.05. The learning rate started at
1e-4 and was then decreased using a cosine learning rate scheduler. The hidden
dimensions of the network were set to [32, 32, 64, 128, 256] for each stage.
Additionally, for the CT encoder, we utilized weights trained using the Models
Genesis method.

During the prediction phase, we performed tumor lesion segmentation on
the whole-body image with background cropping for memory efficiency, based
on the PET image. No additional post-processing was applied. All models used
were evaluated on the validation dataset using a sliding-window approach with
a 0.5 overlap, and a constant kernel. For the final test phase submission, we
used the window size of the sliding-window as 192×192×192× size, otherwise
160×160×160 size.

3.2 Feature Fusion

In this section, we compare the performance of models and feature fusion strate-
gies. The models used for comparison are Swin UNETR [4] and U-Net [7]. Due to
VRAM limitations, the comparison of feature fusion was conducted with U-Net
as the reference. Table 2 presents the evaluation results of the trained models
on the validation dataset.

When utilizing the same early fusion, U-Net achieved a dice score of 0.6723.
In contrast, Swin-UNETR demonstrated better performance with a dice score
of 0.6817, outperforming U-Net. However, with middle fusion, U-Net showed the
highest performance, achieving a dice score of 0.6934. Furthermore, using late
fusion also resulted in an improvement of over 0.012 compared to early fusion.
When conducting experiments to address the imbalance in model capacity and
ensure similar parameters, the results did not significantly differ from the previ-
ous findings. Consequently, we concluded that middle fusion is the most effective

Table 2. Fusion methods

Network Fusion methods params Dice Score (↑)

SwinUNETR early fusion 15.7 M 0.6817

U-Net early fusion 5.7 M 0.6723
U-Net middle fusion 15.8 M 0.6934
U-Net late fusion 11.5 M 0.6844

U-Net early fusion 15.4 M 0.6691
U-Net late fusion 15.9 M 0.6853
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Table 3. The prediction results on the validation dataset for models using different
WA methods. * denotes the model submitted to the AutoPET final phase.

Model Dice Score (↑) False Positive (↓) False Negative (↓)

Vanilla model 0.6948 8.5077 13.4579

WA (Best) 0.7097 9.7973 10.8431

EoA (uniform) 0.7160 9.9053 11.3314
DiWA (uniform) 0.6597 9.9179 13.9808
*EoA (greedy) 0.7242 8.8002 11.3881
*DiWA (greedy) 0.7200 8.6254 11.5744

for learning multi-modal information of PET/CT to perform segmentation, and
hence adopted middle fusion as the baseline.

3.3 Weight Averaging

In this section, we conduct an in-depth experiment on Weight Averaging (WA).
Table 4 shows the prediction results of the models on the validation dataset for
each WA method. The ’Vanilla model’ represents the model trained using the
conventional training approach without WA. ’WA (BEST)’ indicates the best-
performing model among models trained with a single run, representing the WA
method.

Models trained using the Ensemble of Averages (EoA) [1] and Diverse Weight
Averaging (DiWA) [11] methods, were acquired under various hyperparameter
settings. The augmentation methods were modified to be stronger or weaker
based on the degree specified in Table 1. During the WA step, optimizers such
as AdamP [6], AdamW [10], and Ada-belief [16] were used. The learning rate
utilized during WA varied accordingly.

Among all the models, the EoA model acquired in a greedy manner ex-
hibited the highest dice score (0.7242) and demonstrated overall satisfactory
performance, including low False Positives and False Negatives. The ’vanilla
model,’ which did not have WA applied, showed the lowest False Positives but
conversely had the highest False Negatives. When applying WA and obtaining
the ’WA (Best)’ model from a single run, we observed a significant reduction in
False Negatives, resulting in a dice score increase of 0.7097 compared to when
WA was not applied. Both EoA and DiWA demonstrated competitive perfor-
mance. However, it’s worth noting that uniformly applying WA in DiWA led to
an overall performance decrease.

Overall, models with a high Dice score, low False Positives, and low False
Negatives are suitable for the autoPET evaluation metrics. Furthermore, ac-
tive consideration should be given to the domain generalization of the model.
Therefore, we decided to submit the EoA and DiWA models acquired through a
greedy approach. Since the results of the final test submission for this autoPET
challenge are not disclosed, the actual performance remains undisclosed.
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4 Conclusion

We introduced various approaches to train a domain-agnostic model for whole-
body PET/CT scans. We explored tailored augmentation methods to enhance
the robustness to acquisition protocols and sites and investigated the utilization
of the weight averaging method to effectively achieve domain generalizability
at a low cost. Additionally, we evaluated feature fusion strategies for leveraging
multi-modality information. Through these efforts, we expect to obtain models
that are both high-performing and possess strong generalizability.
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