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Abstract. Multimodal Positron Emission Tomography / Computed To-
mography (PET/CT) is essential for diagnosing malignant tumors, eval-
uating disease status using high-resolution anatomical CT and molecular
PET imaging[16]. 18-�uorodeoxyglucose (FDG) PET/CT is widely used
for identifying metabolically active tumors, improving accuracy in de-
tecting metastatic disease. Precise tumor quanti�cation and staging are
critical prognostic factors[8][3]. Automated deep learning algorithms of-
fer potential for tumor lesion segmentation, but face challenges such as
low PET image resolution, tracer uptake variations, and limited focus
on tumor segmentation. We propose extending segmentation to include
normal tissues for improved performance. Our study focuses on segment-
ing multiple organs alongside lesions in the AutoPET Challenge 2023
dataset. Using �vefold cross-validation and UNET models, we automate
lesion and normal organ segmentation with multimodal PET/CT data
from xxx subjects in the AutoPET MICCAI 2023 Challenge. The ensem-
ble of model outputs yielded a dice score of xxx, a Hausdor� distance of
xxx, sensitivity of xxx, and speci�city of xxx for lesion segmentation in
the test dataset (N=150).
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1 Introduction

Whole-body Positron Emission Tomography/Computed Tomography (PET/CT)
serves as a prominent modality for tumor imaging, enabling the assessment of
localized tumor burden and the early detection of symptomatic metastatic le-
sions. PET/CT o�ers a non-invasive approach to quantify metabolically active
tumors and plays a pivotal role in initial diagnosis, staging, restaging, treatment
planning, and recurrent surveillance across various cancer types. Notably, recent
research has unveiled PET/CT's potential to furnish early insights into tumor
response to therapy, thereby facilitating the prospect of personalized patient
management [2].
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Numerous PET-based radiotracers �nd extensive application in diverse ma-
lignant tumors, with 18-�uorodeoxyglucose (18F-FDG) standing as the foremost
choice for oncologic imaging. 18F-FDG leverages increased glucose metabolism
in malignant tumors for detection [13][6]. This conventional tracer excels at
identifying lesions characterized by elevated glucose metabolism in both pri-
mary tumors and metastases, particularly showcasing high sensitivity in detect-
ing metastases within solid tumors [4].

Traditionally, lesion annotation relies on expert radiologists to conduct quan-
titative analyses. However, the automation of lesion annotation is increasingly
imperative to circumvent the labor-intensive, error-prone, and time-consuming
nature of manual annotation, particularly in the context of whole-body FDG-
PET scans. Challenges in developing automated tumor segmentation algorithms
encompass issues such as suboptimal PET image resolution, pronounced statis-
tical noise, the uptake of FDG in various highly metabolic normal tissues (e.g.,
brain and heart) alongside tumor regions, temporal �uctuations in blood pool
signals, inter-subject uptake variability, the sparsity of tumor regions in whole-
body PET/CT, and data acquisition disparities [7] [1].

Recent advancements in deep learning models have demonstrated their capac-
ity to achieve highly accurate PET/CT lesion segmentation in speci�c regions,
o�ering a promising avenue to address these challenges. Several recent studies
have explored the potential of DL-based automated tumor segmentation in PET
or hybrid PET/CT examinations, often focusing on speci�c disease types or or-
gans such as head and neck cancer, liver, lung, and bone lesions [15],[9],[12],[10].

In our recent study utilizing Ga-68 PSMA PET/CT data[11], we observed
a notable enhancement in lesion segmentation performance when normal up-
take organs (brain, liver, kidneys...,) were included in the segmentation process
through deep learning models. Consequently, we intend to assess the validity
of this concept by segmenting various normal uptake organs alongside lesions
within the AutoPET 2023 challenge dataset. We trained a 3D residual UNET
using �ve-fold cross validation on AutoPET 2023 data and performed adaptive
ensemble to get �nal results. Our method achieved top performing results in the
challenge.

2 Materials and Methods

2.1 Data and Preprocessing

Our study leveraged whole-body FDG-PET/CT data from 900 patients, encom-
passing 1014 studies generously provided by the AutoPET Challenge 2023, to
train our models. To rigorously evaluate algorithm robustness and generalizabil-
ity, we employed held-out datasets comprising 150 studies. Among these, 100
studies were sourced from the same hospital as the training database, while
50 were selected from a di�erent hospital but adhering to a similar acquisition
protocol.

In the initial preprocessing stage, we resampled the CT data to PET reso-
lution and applied necessary normalization procedures. The task of annotating
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Fig. 1. Representative Whole Body FDG PET/CT scans provided by AutoPET chal-
lenge with annotations
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both the training and test datasets was undertaken by experts in the �eld. At
the University Hospital Tübingen, a Radiologist with a decade of experience
in Hybrid Imaging, coupled with a background in machine learning research,
meticulously annotated all the data. Similarly, at the University Hospital of the
LMU in Munich, a Radiologist with �ve years of experience in Hybrid Imaging,
complemented by expertise in machine learning research, conducted annotations.
The annotation process encompassed the delineation of regions corresponding to
the brain, bladder, kidneys, liver, stomach, spleen, lungs, and heart, facilitated
through the Totalsegmentator model [14].

Subsequently, we trained the UNET model for the segmentation of both
lesions and eight normal uptake organs, employing a rigorous �ve-fold cross-
validation approach with the training set. The resulting model was then up-
loaded to the challenge portal in docker format for testing. Notably, the model's
output adhered strictly to the challenge requirements, focusing solely on the
segmentation of lesions.

Fig. 2. The layers of the UNET architecture used. The input is a volume of 64x160x160
with one channels, CT. Input is resampled down �ve times by convolution blocks
with strides of 2. On the decoder side, skip connections are used to concatenate the
corresponding encoder layers to preserve spatial information.



Title Suppressed Due to Excessive Length 5

Fig. 3. In one instance of our UNET models, each encoding layer is a series of Con-
volution, normalization, and activation function repeated twice. In another instance,
ResUNET, each encoding layer adds a residual path with convolution and normaliza-
tion.

2.2 Model Training Methodology

Model Architecture The nnUNET pipeline has achieved top tier performance
in multiple medical imaging segmentation competitions. Analysis of the nnUNET
pipeline and model architecture has shown that di�erent variations sometimes
perform better than the baseline nnUNET architecture [10] [5]. From this, a
standard a variant model using residual connections was proposed for train-
ing (see Fig. 2 and 3). The input image size of 64x160x160 with one channel,
CT is used as input. Input is resampled down �ve times by convolution blocks
with strides of 2. On the decoder side, skip connections are used to concate-
nate the corresponding encoder layers to preserve spatial information. Instance
normalization and leaky ReLU activation in the network layers was used. This
architecture initially used 32 feature maps, which then doubled for each down
sampling operation in the encoder (up to 1024 feature maps) and then halved
for each transposed convolution in the de-coder. The end of the decoder has the
same spatial size as the input, followed by a 1x1x1 convolution into 1 channel
and a SoftMax function. Models are trained for �ve folds with loss function of
Dice Sorensen Coe�cient (DSC) in combination with weighted cross entropy
loss were trained. To prevent over�tting augmentation techniques such as ran-
dom rotations, random scaling, random elastic deformations, gamma correction
augmentation, mirroring and elastic de-formation, were adopted. Each of the �ve
models were trained for 1000 epochs with batch size of eight using SGD optimizer
and learning rate of 0.01. Dice Similarity Coe�cient (DSC), and normalized sur-
face dice (NSD), will be used to assess di�erent aspects of the performance of
the segmentation methods.
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2.3 Results

We trained a �ve fold UNet model for automatic whole body lesion segmentation
with robust mean dice of 0.xxxx and 0.xxxx dice in validation and held out
testing respectively.

2.4 Discussion

Our method achieved similar performance in both cross fold validation ann un-
seen held out data showing that it generalized well multicenter data. Adaptive
ensemble increased the performance by selectively picking model outputs with
high contribution to �nal ensemble. [10] and uncertainty aware segmentation
correction may improve the segmentation performance.

2.5 Conclusion

We have trained a 3D UNet and achieved robust and generalized segmentation
performance on automatic whole body FDG PET/CT lesion segmentation. We
achieved xth rank in MICCAI AutoPET 2023 challenge out of xx teams partic-
ipated.
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